Intraflagellar transport velocity is governed by the number of active KIF17 and KIF3AB motors and their motility properties under load.
نویسندگان
چکیده
Homodimeric KIF17 and heterotrimeric KIF3AB are processive, kinesin-2 family motors that act jointly to carry out anterograde intraflagellar transport (IFT), ferrying cargo along microtubules (MTs) toward the tips of cilia. How IFT trains attain speeds that exceed the unloaded rate of the slower, KIF3AB motor remains unknown. By characterizing the motility properties of kinesin-2 motors as a function of load we find that the increase in KIF3AB velocity, elicited by forward loads from KIF17 motors, cannot alone account for the speed of IFT trains in vivo. Instead, higher IFT velocities arise from an increased likelihood that KIF3AB motors dissociate from the MT, resulting in transport by KIF17 motors alone, unencumbered by opposition from KIF3AB. The rate of transport is therefore set by an equilibrium between a faster state, where only KIF17 motors move the train, and a slower state, where at least one KIF3AB motor on the train remains active in transport. The more frequently the faster state is accessed, the higher the overall velocity of the IFT train. We conclude that IFT velocity is governed by (i) the absolute numbers of each motor type on a given train, (ii) how prone KIF3AB is to dissociation from MTs relative to KIF17, and (iii) how prone both motors are to dissociation relative to binding MTs.
منابع مشابه
The Mechanochemical Cycle of Mammalian Kinesin-2 KIF3A/B under Load
The response of motor proteins to external loads underlies their ability to work in teams and determines the net speed and directionality of cargo transport. The mammalian kinesin-2, KIF3A/B, is a heterotrimeric motor involved in intraflagellar transport and vesicle motility in neurons. Bidirectional cargo transport is known to result from the opposing activities of KIF3A/B and dynein bound to ...
متن کاملKinesin-2 motors transport IFT-particles, dyneins and tubulin subunits to the tips of Caenorhabditis elegans sensory cilia: Relevance to vision research?
The sensory outer segments (OS) of vertebrate retinal photoreceptors, which detect photons of light, resemble the distal segments of Caenorhabditis elegans sensory cilia, which detect chemical ligands that influence the chemotactic movements of the animal. Based on fluorescence microscopy assays performed in sensory cilia of living, transgenic "wild type" and mutant C. elegans, combined with in...
متن کاملKinesin-3 KLP-6 Regulates Intraflagellar Transport in Male-Specific Cilia of Caenorhabditis elegans
Cilia are cellular sensory organelles whose integrity of structure and function are important to human health. All cilia are assembled and maintained by kinesin-2 motors in a process termed intraflagellar transport (IFT), but they exhibit great variety of morphology and function. This diversity is proposed to be conferred by cell-specific modulation of the core IFT by additional factors, but ex...
متن کاملAutoinhibition of the kinesin-2 motor KIF17 via dual intramolecular mechanisms
Long-distance transport in cells is driven by kinesin and dynein motors that move along microtubule tracks. These motors must be tightly regulated to ensure the spatial and temporal fidelity of their transport events. Transport motors of the kinesin-1 and kinesin-3 families are regulated by autoinhibition, but little is known about the mechanisms that regulate kinesin-2 motors. We show that the...
متن کاملWhy motor proteins team up - Intraflagellar transport in C. elegans cilia
Inside the cell, vital processes such as cell division and intracellular transport are driven by the concerted action of different molecular motor proteins. In C. elegans chemosensory cilia, 2 kinesin-2 family motor proteins, kinesin-II and OSM-3, team up to drive intraflagellar transport (IFT) in the anterograde direction, from base to tip, whereas IFT dynein hitchhikes toward the tip and subs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 33 شماره
صفحات -
تاریخ انتشار 2017